Confidence intervals for kernel density estimation
نویسندگان
چکیده
This article describes asciker and bsciker, two programs that enrich the possibility for density analysis using Stata. asciker and bsciker compute asymptotic and bootstrap confidence intervals for kernel density estimation, respectively, based on the theory of kernel density confidence intervals estimation developed in Hall (1992b) and Horowitz (2001). asciker and bsciker allow several options and are compatible with Stata 7 and Stata 8, using the appropriate graphics engine under both versions.
منابع مشابه
Statistical Topology Using the Nonparametric Density Estimation and Bootstrap Algorithm
This paper presents approximate confidence intervals for each function of parameters in a Banach space based on a bootstrap algorithm. We apply kernel density approach to estimate the persistence landscape. In addition, we evaluate the quality distribution function estimator of random variables using integrated mean square error (IMSE). The results of simulation studies show a significant impro...
متن کاملBayes Interval Estimation on the Parameters of the Weibull Distribution for Complete and Censored Tests
A method for constructing confidence intervals on parameters of a continuous probability distribution is developed in this paper. The objective is to present a model for an uncertainty represented by parameters of a probability density function. As an application, confidence intervals for the two parameters of the Weibull distribution along with their joint confidence interval are derived. The...
متن کاملThe stochastic approximation method for the estimation of a multivariate probability density
We apply the stochastic approximation method to construct a large class of recursive kernel estimators of a probability density, including the one introduced by Hall and Patil (1994). We study the properties of these estimators and compare them with Rosenblatt’s nonrecursive estimator. It turns out that, for pointwise estimation, it is preferable to use the nonrecursive Rosenblatt’s kernel esti...
متن کاملNonparametric density estimation with adaptive varying window size
We propose a new method of kernel density estimation with a varying adaptive window width. This method is different from traditional ones in two aspects. First, we use symmetric as well as nonsymmetric left and right kernels with discontinuities and show that the fusion of these estimates results in accuracy improvement. Second, we develop estimates with adaptive varying window widths based on ...
متن کاملComputing confidence intervals for log-concave densities
Log-concave density estimation is considered as an alternative for kernel density estimations which does not depend on tuning parameters. Pointwise asymptotic theory has been already developed for the nonparametric maximum likelihood estimator of a log-concave density. Here, the practical aspects of this theory are studied. In order to obtain a confidence interval, estimators of the constants a...
متن کامل